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Clinical applications

PACS, iSyntax and iSite
J. Huffman Senior Fellow, Philips Healthcare Informatics, Foster City, CA, USA.

PACS
PACS stands for “Picture Archiving and 
Communication System”. The term is 
traditionally used to describe the system which 
handles the archiving of all medical images 
generated by a hospital. The primary purpose 
of PACS was to end the use of film as the legal 
mode of archiving medical images, and to provide 
the ability to diagnose from these images with 
a computer. Over the years, the interpretation 
of the term PACS has expanded to include the 
workstation, the network, the archive and in 
many cases parts of the medical record.

The history
The first PACS systems were developed with 
U.S. government funding in the 1970’s. The 
primary digital modality was X-ray, with images 
scanned into the system at a resolution of 
approximately 2048 x 2536 (2 K x 2.5 K). In 
those days, CT and MR images were many 
millimeters thick and scans were only a few tens 
of slices. There were no defined standards for 
image communication between systems, and all 
diagnosis was done on film with lightboxes. 
The medical record was a folder with papers 
and film. 

In those days, computer technology was still 
rather primitive: program entry was via paper 
tape and punch cards, disc capacities were 
measured in megabytes and cost thousands of 
dollars, 8 MB of RAM came in multiple 
modules and cost over $1000, a 9600 baud 
modem cost $1000, graphics workstations were 
commercially non-existent, and one mega-flop 
was a super computer. Of course, these 
conditions rapidly improved over the next decade, 
when the first commercially available PACS 
were developed. However, the immense resource 
requirements of the PACS application led to a 
persistent divergence of the PACS systems from 
the mainstream information systems which 
became ubiquitous in the same timeframe.

During this period, the workstation, followed 
by the desktop workstation and then the personal 
computer, all came into existence. 
Computational capabilities were still low, disc 
space and RAM were still extremely expensive, 
but text editors and information systems to 
facilitate patient information and billing were 

commercially available and cost-effective. The 
PACS system, when implemented – and there 
were very few implemented – resided 
exclusively in the radiology departments, cost 
millions of dollars and had marginal benefits. 
Because the systems were only available in the 
radiology department, film still had to be 
printed for distribution to other departments 
and referring physicians. 

Network and disc speed limitations meant that 
any use of images had to be scheduled, and the 
data had to be routed in advance to a specified 
workstation, due to the latencies involved in 
fetching. The systems that were implemented 
comprised exotic hierarchical storage systems 
that were outdated months after installation, 
the most expensive direct network connections 
to the radiology workstations, and the 
workstations themselves, which were the most 
expensive graphics stations on the market. Due 
to the unique nature of this combination of 
exotic hardware, a cadre of support personnel 
were required to maintain the systems. All-in-
all, this was barely a proof-of-concept and 
certainly not a viable solution. It is not surprising 
that PACS took another decade to develop any 
market penetration.

During the second decade of PACS, hierarchical 
storage systems became more widely available, 
disc and memory became less expensive, and 
graphical workstations were widely available. 
Nevertheless, all of these components were 
extremely expensive and required specialized 
support.

The problem
The history of the development of PACS, and 
the divergence from the information systems 
which were universally deployed in this same 
timeframe, led to an accepted description of 
the PACS problem as:
There are hundreds of MB of medical data on a 
server, that a doctor wants to be able to read within 
two seconds, and then wants to be able to 
manipulate multiple 2K x 2.5K images in real 
time.

This of course leads to the requirement for the 
systems to be server systems with vast arrays of 
expensive, rapid-access discs, with direct optical 
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departments.

E

Early PACS installations 
were complex and required 
specialized support.

E



MEDICAMUNDI 51/1 2007/06 	 19

connections to a graphics workstation costing 
hundreds of thousands of dollars in order to be 
able to manipulate the images in real time.

There were improvements with the adoption of 
complex routing rules to pre-fetch data to a 
particular workstation for a doctor to use. 
However, if a workstation went down – which 
was quite common in that era – or a doctor could 
not make it to the workstation room, film still 
had to be printed. Consequently, not only were 
there no cost savings, but an entire layer of 
support costs was added to the existing hospital 
systems.

This led to the continued non-adoption of PACS 
for many years. And this is where Stentor and 
iSyntax came into play.

The problem re-stated
The insight that led to the development of the 
iSyntax technology and the creation of Stentor 
was that the statement of the PACS problem was 
incorrect, as it was not directed towards solving 
the workflow problem of the institution. The 
correct formulation of the PACS problem is:
There are hundreds of MB of medical data on a 
server, that a doctor wants to query from a 
workstation in real time.

In other words, if a doctor is sitting at a 
workstation with a screen size of, for example, 
1280 x 1024, then if the PACS system is able to 
“fill” this window with the requested 
information interactively, that solves the problem.

An additional insight was that there were two 
ways to solve the increasing divergence of the 
PACS and Information Systems in medical 
institutions:
• �either enable the exotic PACS systems, that 

were not cost-effective nor integrated into the 
institutional workflow, to handle information

• �or have a technology that makes images just 
another piece of information to integrate into 
the ubiquitous information systems.

Stentor adopted the latter approach.

Stentor
Founded in 1998 in Brisbane, California, 
Stentor was established as the commercial entity 
to leverage the technology and workstation 
design developed at the University of Pittsburgh 
Medical Center Informatics Lab, run by Dr. 
Paul Chang. Unlike traditional PACS solutions 
offered by the industry, the Stentor solutions 
were designed by doctors for doctors within a 
medical institution. This led to solutions which 
were far more closely coupled to healthcare 

workflow than the competing platforms. In 
addition, the iSyntax technology allowed these 
applications to run on off-the-shelf PC’s – and 
have a performance comparable to that of 
workstations costing twenty times as much.

The novel workstation design was not the only 
innovation which Stentor brought to the market. 
The overall system design incorporated many 
aspects of the traditional RIS functionality to 
support departmental workflow without a full 
RIS present. This greatly increased the usefulness 
of the standalone system.

An additional differentiator of the iSite system 
is that it was designed to be deployed and 
monitored remotely. Field support is not typically 
used to install, upgrade or monitor any iSite 
systems. This capability is designed into the 
software.

But the most revolutionary aspect of Stentor’s 
introduction to the market was the business 
model. Even were traditional PACS to have 
fulfilled the functional promises that had been 
made – they were still immensely expensive. 
Stentor eliminated the cost of entry for hospitals 
to have this type of solution by packaging it as 
a service, rather than a product. 

Stentor came up with a per-study fee for storage 
and distribution of the data through iSite. If an 
institution wanted another workstation, there 
was no license fee – they just purchased another 
computer and loaded the software. Upgrades 
were included in the per-fee charge – no hidden 
costs. The institution could then pay for the 
system as they used it. This model uniquely 
aligned the interests of the customer and the 
supplier – producing one of the most loyal 
customer bases in the industry – and forcing 
Stentor to always provide the highest quality 
applications.
 
The previously existing PACS technology 
required specialized computer workstations 
costing as much as $120,000 each to handle the 
volume of data required and manipulate the 
images in real time without the iSyntax technology. 
In addition, again without the iSyntax 
technology, high performace local networks were 
required to distribute this volume of data – 
causing limited distribution of the solutions and 
expensive infrastructure upgrades. Lossy 
compression was used to overcome the network 
issues – but this just provided corrupted data to 
the workstation – which still had to manipulate 
these large images in real time. All of these issues 
made the traditional PACS solutions prohibitively 
expensive for all but the nation’s biggest medical 

The insight that led to 
iSite was that developers 
were addressing the 
wrong problem.
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centers. And even those institutions could not 
afford to use the expensive workstations outside 
their radiology departments.

The iSyntax technology makes it possible to 
distribute and view medical images over ordinary 
networks on desktop PCs (Figure 1). Dr Chang 
came up with the inspiration for the iSyntax 
approach after visiting a factory that had done 
away with its parts warehouse by adopting 
“just-in-time” delivery of its supplies. Because 
doctors do not focus on an entire radiological 
image at one time, it is only necessary for the 
system to deliver the data for the region of 
interest at the moment that it is being viewed.

The iSite software incorporating iSyntax 
technology was first deployed at UPMC 
Presbyterian and has subsequently been deployed 
at over 300 medical institutions in the United 
States and Europe.

The iSite system is designed to give all physicians 
within a healthcare system - not just the 
radiologists - access to full-quality diagnostic 
images anywhere and at any time. It ends the 
practice of “patients as couriers” to take X-rays 
from one doctor or institution to another. 
Patients and doctors at a community hospital 
in the UPMC system, for example, are able to 
get immediate consultations with subspecialists 
at another hospital viewing the same images at 
the same time.

In August 2005, Stentor merged into Philips 
Medical Systems’ Healthcare Informatics business, 
and is now the Radiology Informatics Business 
Group for Philips, headquartered in Foster City, 
California. The iSite platform is now marketed 
worldwide by Philips Medical Systems.

iSyntax and iSite
iSyntax is the underlying representation of 
images residing on a server, and the 
communication protocol used to transmit the 
requested information to a client in the iSite 
system. The images are represented by wavelets 
(see the Intermezzo) allowing the maximum 
information in the signal to be represented by 
the minimum number of coefficients, without 
loss of information. 

The typical way to optimize the solution to any 
complex problem is to examine each component 
of the problem and optimize the steps. This is 
what led to the impractical early PACS solutions. 
When there is a complex system, such as 
information workflow in a hospital, the solution 
to the whole problem, i.e. the system optimization 
of a solution, is rarely the same as the individual 
component optimization.

The iSite solution is designed to optimize the 
system (i.e. workflow) problem in the 
healthcare environment. The design of the iSite 
system and the iSyntax representation has a 
number of critical characteristics:

• �The representation is scalable. Any image or 
sub-image can be retrieved with bandwidth 
and computation proportional only to the 
number of pixels requested – independently 
of the size of the original data set.

• �The server access from the client is stateless. 
This allows load balancing and optimal use of 
available resources. Human interaction with 
computers is at a snail’s pace relative to the 
available computational and bandwidth 
resources. Keeping a direct connection to a 
resource with long idle periods is inefficient.

• �The server access to data is computation-free. 

G
Figure 1. The iSyntax technology 

makes it possible to display high-

quality medical images on a 

standard PC.
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Medical images can be 
distributed over ordinary 
networks and viewed on 
desktop PCs.
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Intermezzo

Wavelets
In the same way that an x- and y-coordinate can 
represent a point in a plane, the branch of 
mathematics known as “functional analysis” 
uses coordinate systems called “basis elements” 
to represent functions. The sine and cosine 
functions in the Fourier transform are the best 
recognized example of this approach. Any 
unknown function can be represented by these 
basis elements multiplied by a series of 
constants. The characterization of the function 
is then the characterization of a known set of 
these basis functions.
Wavelets are the mathematically optimal way of 
representing any signal. “Optimal” means that 
the maximum information in the signal can be 
represented by the minimum number of 
coefficients. It should be noted that there are an 

infinite number of wavelet systems which are 
parameterized. A particular system of basis 
elements with desired characteristics can be found 
for a target application. 

One major advantage of the wavelet representation 
is that geometric detail is preserved – that is, the 
transform coefficients preserve the relative 
positions of features (see Figure I ). This allows 
extraction of specific coefficients to reconstitute 
a specific feature in an image (see Figure II ). 
Additionally, this is well matched to the human 
visual system and the way in which images are 
perceived. Frequency-based methods, such as 
the DCT in the original JPEG format, create 
artifacts that are easily seen as they corrupt the 
geometry of the original image. E

Figure II. Scalable access to sub-images.

Figure I. Wavelet transformed image 
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Compression

Image compression essentials
An image is represented in a computer by a 
matrix of pixel values, either monochrome or 
multi-spectral, for example in color. Since most 
images of interest are created by reflected or 
absorbed light or other spectra such as X-rays, 
sampled values in an immediate geometric 
vicinity tend to be related, or correlated. This 
means that pixels that are close geometrically 
tend to be either similar in value, or completely 
different. This correlation implies redundancy 
in the representation of the image. The process 
of image compression tries to remove the 
redundancy in the description of the image 
required to reconstitute the original sampled 
values, in order to reduce the amount of memory 
or bandwidth required for storage and 
transmission.

There are two distinct classes of image 
compression methods – lossless, and lossy. 

Lossless compression essentials
Lossless compression retains sufficient 
information to reconstitute the image exactly. 
Lossless image compression has absolute limits 
that no method can exceed. The branch of 
mathematics that defines this limit – information 
theory – is extremely mature. There is an 
“information content” in an image which can be 
measured in bits and is the absolute upper limit 
for how much a signal can be compressed – as 
long as the data is not directly derived for some 
easily predicted model. This “information 
content” is defined as:	

Σ -p
i
 lg ( p

i
 )

I.e., the sum of the probabilities of the individual 
value, times the lg (log base 2) of the probability. 
For example, an image of any single value has a 
probability of 1 for that value, and an information 
content of 0 bits – there is no information in the 
image. If an image were comprised of 50% zeros, 
and 50% ones, then the information content 
would be:

-0.5 * lg (0.5) + -0.5 * lg (0.5) = 1 bit of information 

This formula quantitatively describes the amount 
of independent information in the sampled data 
per sample.
If there is a predictive model of the data, then 
the probabilities used in the equation are the 
conditional probabilities of the independent 
symbols. I.e., if a 1 always follows a 0, then the 
probability of the 1 after the zero is 1, and the 
information content is 0.

The “art” of image compression is two-part – 
either in the definition of a model that improves 
the predictive probability of the “next” pixel, or 
in the method used to reorganize the data into 
a representation more amenable to compression. 
In either approach, the information content of 
the image as a fundamental limit of 
compressibility cannot be exceeded. 

As it turns out, a wavelet representation of the 
image is close to the optimal “re-organization” 
of the image information for input to a lossless 
(or lossy) compression system. The wavelet 
representation optimally decorrelates the data 
so that the input values are independent – there 
is no redundant encoding of data. In effect, the 
wavelet transform is acting as a high-efficiency 
predictor – but retains all of the geometric 
information of the image. Consequently, this 
representation provides an optimal 
representation for both image compression, and 
human visual perception.

Lossy compression methods
Lossy image compression uses various methods 
to approximate the original image in such a way 
as to improve compressibility. By lossy, it is meant 
that the input pixel values are changed upon 
inversion. As the vast majority of interesting 
images are not easily predictable, this 
approximation step usually comprises 
quantization of the images into a reduced 
dynamic range. For example, if an image were 
comprised of pixel values from 0 to 255 such as 
an 8-bit grayscale image, to improve 
compressibility, the data could be quantized by 
dividing each value by 2, yielding a new 
dynamic range of 0 to 127. These quantized 
values can then be inverted by multiplying by 
the quantization factor and the degradation in 
the image relative to the original is caused by 
the deviation of the approximated values from 
the original values. 
In this case, all odd values would be 
approximated by the next lower even value – 
but the image has half the “information content”. 

After this quantization, or approximation step, 
similar lossless coding methods are used as in 
the lossless case above. These methods are 
generally called “entropy coding” methods as 
“information content” is a measure of the 
entropy of a system. The more ordered a system, 
the less information is present. If every value 
were predictable – there would be no 
information. If every value is random, then 
entropy is maximized and the information 
content is maximized.22	 MEDICAMUNDI 51/1 2007/06
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This allows optimal, scalable use of the server 
resources. If any interaction has a computational 
load on the server, the server scalability is 
compromised. Many competitors have copied 
the iSyntax behavior at a single workstation – 
but fail when multiple users are querying the 
same server. The iSite system scales to over a 
thousand users on a single server.
• �The server-client communication is in discrete 

requests. Streaming overloads resources. The 
context of a doctor’s accesses can allow a 
predictable way to pre-fetch data – for example, 
the next image in a stack in the direction of 
query. With the use of localizers and scouts, 
the doctor can go directly to an important 
image or feature without incurring the overhead 
of waiting for the streaming load of the entire 
dataset. Workflow is optimized1. 

These capabilities combine to provide the 
technology to enable the incorporation of images 
into the ubiquitous information systems as just 
another piece of information.

Compression
Additional benefits, and the relationship of 
iSyntax to lossless and lossy compression 
methods are described in detail in the 
Intermezzo. In brief, there are two distinct 
classes of image compression methods: lossless 
and lossy. As the names imply, lossless 
compression methods retain all of the original 
information, while in lossy methods some of 
the information is lost.

 Why lossy methods are sub-optimal for 
medical images
Lossy image compression approximates the 
original image by an image more amenable to 
prediction or entropy coding. Every lossy image 
compression method uses a target error metric 
such as mean-squared error or absolute 
maximum error as a measurement of how good 
a compression is. This is often indicated by the 
signal-to-noise ratio.

Quantization methods approximate similar 
values by a constant value – for example, in an 
area of an image with texture, the detail in the 
texture can be sacrificed without incurring a 
large “error”. In an ordinary photograph, 
background objects such as trees or the sky can 
be heavily degraded without perceived loss of 
detail in the image. These are the methods used 
by every commercial image compression system, 
along with JPEG.
The difficulty here is in the application of these 
methods to medical images. In virtually all cases, 

the diagnostic information in a medical image 
is a subtle variation in low-contrast, high-
frequency detail – i.e. local texture. A hard edge 
such as a fracture is easily detected in even highly 
compressed images. A subtle malignancy does 
not have a hard edge – but is rather identified 
by a variation in localized texture. The human 
eye is very good at detecting this type of local 
variation. However, all commercial compression 
systems preferentially discard this information 
first. These subtle details – such as a 
pneumothorax – are routinely missed in 
uncompressed images. The idea that compression 
can be “as good as” the original image neglects 
these considerations. 

The common argument that diagnostically 
important areas are not compressed highly but 
“there is a lot of black space in medical images 
that can be compressed” is answered more 
effectively with the iSyntax approach: “just don’t 
send it”.

iSyntax image representation
The wavelet representation used in iSyntax is 
not compression – it is just a representation. In 
other words, what goes in is what comes out. 
What the wavelet representation brings to the 
table is an optimal way to represent the 
information needed to reconstruct any part of 
an image, at any resolution, with the minimum 
amount of data, while maximizing the data 
integrity relative to the original image. This is, 
in fact, a complicated way of saying that it is the 
best way to represent the data.

The lossless compression step is performed on 
the wavelet-transformed data. Both the iSyntax 
system and JPEG use the identical underlying 
representation.

Given that there is a theoretical limit to the 
maximum compression available for any given 
signal, how is it attained and what are the 
trade-offs?

There are several “degrees of freedom” in how 
compression can be applied to a signal:
1. maximum compression
2. rapid encoding
3. rapid decoding
4. scalable access of encoded data

All of these “degrees of freedom” have an 
associated “cost”. For example, if one chooses to 
attain the highest degree of compression possible, 
then there is no flexibility in encoding or 
decoding times, nor scalable access.

1Clearly, when video formats are used, streaming is the preferred delivery mechanism

Commercial compression 
systems can discard 
critical diagnostic 
information.

E

Wavelet representation 
retains all of the essential 
image data.
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An example of rapid encoding is a delta coder, 
where a signal is encoded by the differences in 
adjacent signals. This is very low computation, 
but has a low expected compression rate.

An intermediate compression method is a 
Huffman coder (variable length prefix coder). 
This requires pre-computing a set of code tables 
but achieves fairly high compression – at the cost 
of latency (computation) in encode and decode 
and the overhead of storing and communicating 
the tables to the decoder.

JPEG and iSyntax have the same image 
representation – a wavelet transform. In fact, for 
the lossless case, the wavelet system chosen is 
the same. The methods differ in the choice of 
lossless compression used. JPEG uses a method 
that achieves close to the theoretical maximum 
compression – at the cost of extremely high 
computation and no scalable access to the data. 
What that means is that the entire image can 
be retrieved with the least amount of data – but 
no sub-part or sub-resolution of the image can 
be retrieved independently2. That is, the entire 
compressed image partition must be accessed 
to retrieve any part of the image.

The iSyntax method uses a lossless compression 
method that optimizes scalable access, at the 
expense of 10-15% coding efficiency. This 
translates into the ability to extract any region 
at full resolution or any sub-resolution of the 
image with no computational overhead. This 
allows for the remote access capabilities of the 
iSyntax system, and the maximum scalability 
of server and client computing resources. 

This choice was made to optimize the 
characteristics of the image storage with medical 
workflow. Data storage is becoming progressively 
more inexpensive, while clinical and diagnostic 
interpretation of images is becoming more 
expensive and more complex. The flexible access 
to data by doctors at any location is far more 
critical than maximum compression. The true 
cost component of the overall system is doctor 
bandwidth. By choosing a flexible representation, 
iSyntax allows the integration of images into 
the information systems of an enterprise as just 
another component of data. This has allowed 
an entire re-design of the user interfaces to 
incorporate visual cues for doctors, rather than 

textual descriptions to identify pertinent medical 
information. This is an enormous gain in 
efficiency and system utilization, as several major 
medical sites using iSite have found3. 

Optimization
There is no magic to iSyntax. There are extremely 
solid limits to how much a signal can be 
compressed and iSyntax gets close to these limits. 
It is unlikely that any future method will ever 
beat iSyntax in compression rate by any 
significant amount.

Following the theme of workflow or system-
wide optimization, the use of iSyntax also enables 
other optimizations.

It is not data bandwidth but latency that is 
important. With the iSyntax technology enabling 
the integration of images into the information 
system, the user interface for dealing with clinical 
data was redesigned for use in the iSite system. 
The doctor no longer needs to read a description 
of the contents of a study, but is rather visually 
cued by the actual contents of the study. This is 
far more efficient.

With an intelligent design of the interface, the 
problem becomes one of how to “hide” latency? 
This is a complicated topic with many nuances, 
but a simple example will show why iSyntax with 
no lossy compression is more effective and faster 
than a system using lossy JPEG compressed 
images. 

Assume a user would like to display an X-ray 
image that is approximately 2048 x 2536 
(2 K x 2.5 K) on their computer screen in a 
small window approximately 500 x 300 pixels. 
Although, the original image size is 
approximately 10 MB, the data required for the 
“first” image to be displayed using iSyntax is 
around 40 KB, whereas the lossy compressed 
image (assuming 20 : 1 lossy compression) 
requires 500 KB for any display. The user then 
examines the available images and makes 
decisions as to what to do next. During this 
phase, the iSyntax system is downloading 
increasing resolution – “hiding” load time. By 
the time the user decides to increase the size of 
the window or zoom into the image in order to 
investigate some structures more closely or 
perform quantitative measurements, all data 

2JPEG does provide the ability to encode a pre-computed region of interest for preferential extraction. However, this 

is a meaningless case in medical imaging where the pertinent area of an image cannot be known beforehand.

3MD Anderson in Houston, TX found that the utilization of their physician portal went from 5-6% to over 90% after 

the inclusion of the iSyntax imaging capabilities.

Images are integrated into 
the enterprise information 
system like any other data.
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Visual cues achieve an 
enormous gain in efficiency 
and system utilization.
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will have been downloaded in the background. 
iSyntax gives the appearance of immediate and 
instantaneous image load time with little 
sensitivity to data size or network limitation. In 
contrast, the lossy system is less responsive, has 
higher user latencies and introduces image 
degradation.

Conclusion
By concentrating on optimizing the workflow 
solution of a combined image and information 
system, using iSyntax as a enabling technology, 
Stentor completely re-solved the PACS problem. 
Combined with a redesign of the data interaction 

iSite is a ubiquitous 
system optimizing the 
workflow of images and 
information.

E
model of the user interface to better support 
rapid interpretation, Stentor was able to integrate 
images into iSite: a ubiquitous information 
system which enabled the first practical unified 
electronic patient records to be developed.

It must be stressed that this is only one 
component of the iSite success. In combination, 
a unique service delivery and business model 
was developed which removed the financial 
barrier of entry to hospitals and clinics to have 
this kind of enterprise support. This aspect of 
the iSite strategy will be dealt with in another 
article K
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