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Clinical applications

PACS,	iSyntax	and	iSite
J. Huffman Senior	Fellow,	Philips	Healthcare	Informatics,	Foster	City,	CA,	USA.

PACS
PACS	stands	for	“Picture	Archiving	and	
Communication	System”.	The	term	is	
traditionally	used	to	describe	the	system	which	
handles	the	archiving	of	all	medical	images	
generated	by	a	hospital.	The	primary	purpose	
of	PACS	was	to	end	the	use	of	film	as	the	legal	
mode	of	archiving	medical	images,	and	to	provide	
the	ability	to	diagnose	from	these	images	with	
a	computer.	Over	the	years,	the	interpretation	
of	the	term	PACS	has	expanded	to	include	the	
workstation,	the	network,	the	archive	and	in	
many	cases	parts	of	the	medical	record.

The history
The	first	PACS	systems	were	developed	with	
U.S.	government	funding	in	the	1970’s.	The	
primary	digital	modality	was	X-ray,	with	images	
scanned	into	the	system	at	a	resolution	of	
approximately	2048	x	2536	(2	K	x	2.5	K).	In	
those	days,	CT	and	MR	images	were	many	
millimeters	thick	and	scans	were	only	a	few	tens	
of	slices.	There	were	no	defined	standards	for	
image	communication	between	systems,	and	all	
diagnosis	was	done	on	film	with	lightboxes.	
The	medical	record	was	a	folder	with	papers	
and	film.	

In	those	days,	computer	technology	was	still	
rather	primitive:	program	entry	was	via	paper	
tape	and	punch	cards,	disc	capacities	were	
measured	in	megabytes	and	cost	thousands	of	
dollars,	8	MB	of	RAM	came	in	multiple	
modules	and	cost	over	$1000,	a	9600	baud	
modem	cost	$1000,	graphics	workstations	were	
commercially	non-existent,	and	one	mega-flop	
was	a	super	computer.	Of	course,	these	
conditions	rapidly	improved	over	the	next	decade,	
when	the	first	commercially	available	PACS	
were	developed.	However,	the	immense	resource	
requirements	of	the	PACS	application	led	to	a	
persistent	divergence	of	the	PACS	systems	from	
the	mainstream	information	systems	which	
became	ubiquitous	in	the	same	timeframe.

During	this	period,	the	workstation,	followed	
by	the	desktop	workstation	and	then	the	personal	
computer,	all	came	into	existence.	
Computational	capabilities	were	still	low,	disc	
space	and	RAM	were	still	extremely	expensive,	
but	text	editors	and	information	systems	to	
facilitate	patient	information	and	billing	were	

commercially	available	and	cost-effective.	The	
PACS	system,	when	implemented	–	and	there	
were	very	few	implemented	–	resided	
exclusively	in	the	radiology	departments,	cost	
millions	of	dollars	and	had	marginal	benefits.	
Because	the	systems	were	only	available	in	the	
radiology	department,	film	still	had	to	be	
printed	for	distribution	to	other	departments	
and	referring	physicians.	

Network	and	disc	speed	limitations	meant	that	
any	use	of	images	had	to	be	scheduled,	and	the	
data	had	to	be	routed	in	advance	to	a	specified	
workstation,	due	to	the	latencies	involved	in	
fetching.	The	systems	that	were	implemented	
comprised	exotic	hierarchical	storage	systems	
that	were	outdated	months	after	installation,	
the	most	expensive	direct	network	connections	
to	the	radiology	workstations,	and	the	
workstations	themselves,	which	were	the	most	
expensive	graphics	stations	on	the	market.	Due	
to	the	unique	nature	of	this	combination	of	
exotic	hardware,	a	cadre	of	support	personnel	
were	required	to	maintain	the	systems.	All-in-
all,	this	was	barely	a	proof-of-concept	and	
certainly	not	a	viable	solution.	It	is	not	surprising	
that	PACS	took	another	decade	to	develop	any	
market	penetration.

During	the	second	decade	of	PACS,	hierarchical	
storage	systems	became	more	widely	available,	
disc	and	memory	became	less	expensive,	and	
graphical	workstations	were	widely	available.	
Nevertheless,	all	of	these	components	were	
extremely	expensive	and	required	specialized	
support.

The problem
The	history	of	the	development	of	PACS,	and	
the	divergence	from	the	information	systems	
which	were	universally	deployed	in	this	same	
timeframe,	led	to	an	accepted	description	of	
the	PACS	problem	as:
There	are	hundreds	of	MB	of	medical	data	on	a	
server,	that	a	doctor	wants	to	be	able	to	read	within	
two	seconds,	and	then	wants	to	be	able	to	
manipulate	multiple	2K	x	2.5K	images	in	real	
time.

This	of	course	leads	to	the	requirement	for	the	
systems	to	be	server	systems	with	vast	arrays	of	
expensive,	rapid-access	discs,	with	direct	optical	
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connections	to	a	graphics	workstation	costing	
hundreds	of	thousands	of	dollars	in	order	to	be	
able	to	manipulate	the	images	in	real	time.

There	were	improvements	with	the	adoption	of	
complex	routing	rules	to	pre-fetch	data	to	a	
particular	workstation	for	a	doctor	to	use.	
However,	if	a	workstation	went	down	–	which	
was	quite	common	in	that	era	–	or	a	doctor	could	
not	make	it	to	the	workstation	room,	film	still	
had	to	be	printed.	Consequently,	not	only	were	
there	no	cost	savings,	but	an	entire	layer	of	
support	costs	was	added	to	the	existing	hospital	
systems.

This	led	to	the	continued	non-adoption	of	PACS	
for	many	years.	And	this	is	where	Stentor	and	
iSyntax	came	into	play.

The problem re-stated
The	insight	that	led	to	the	development	of	the	
iSyntax	technology	and	the	creation	of	Stentor	
was	that	the	statement	of	the	PACS	problem	was	
incorrect,	as	it	was	not	directed	towards	solving	
the	workflow	problem	of	the	institution.	The	
correct	formulation	of	the	PACS	problem	is:
There	are	hundreds	of	MB	of	medical	data	on	a	
server,	that	a	doctor	wants	to	query	from	a	
workstation	in	real	time.

In	other	words,	if	a	doctor	is	sitting	at	a	
workstation	with	a	screen	size	of,	for	example,	
1280	x	1024,	then	if	the	PACS	system	is	able	to	
“fill”	this	window	with	the	requested	
information	interactively,	that	solves	the	problem.

An	additional	insight	was	that	there	were	two	
ways	to	solve	the	increasing	divergence	of	the	
PACS	and	Information	Systems	in	medical	
institutions:
•		either	enable	the	exotic	PACS	systems,	that	

were	not	cost-effective	nor	integrated	into	the	
institutional	workflow,	to	handle	information

•		or	have	a	technology	that	makes	images	just	
another	piece	of	information	to	integrate	into	
the	ubiquitous	information	systems.

Stentor	adopted	the	latter	approach.

Stentor
Founded	in	1998	in	Brisbane,	California,	
Stentor	was	established	as	the	commercial	entity	
to	leverage	the	technology	and	workstation	
design	developed	at	the	University	of	Pittsburgh	
Medical	Center	Informatics	Lab,	run	by	Dr.	
Paul	Chang.	Unlike	traditional	PACS	solutions	
offered	by	the	industry,	the	Stentor	solutions	
were	designed	by	doctors	for	doctors	within	a	
medical	institution.	This	led	to	solutions	which	
were	far	more	closely	coupled	to	healthcare	

workflow	than	the	competing	platforms.	In	
addition,	the	iSyntax	technology	allowed	these	
applications	to	run	on	off-the-shelf	PC’s	–	and	
have	a	performance	comparable	to	that	of	
workstations	costing	twenty	times	as	much.

The	novel	workstation	design	was	not	the	only	
innovation	which	Stentor	brought	to	the	market.	
The	overall	system	design	incorporated	many	
aspects	of	the	traditional	RIS	functionality	to	
support	departmental	workflow	without	a	full	
RIS	present.	This	greatly	increased	the	usefulness	
of	the	standalone	system.

An	additional	differentiator	of	the	iSite	system	
is	that	it	was	designed	to	be	deployed	and	
monitored	remotely.	Field	support	is	not	typically	
used	to	install,	upgrade	or	monitor	any	iSite	
systems.	This	capability	is	designed	into	the	
software.

But	the	most	revolutionary	aspect	of	Stentor’s	
introduction	to	the	market	was	the	business	
model.	Even	were	traditional	PACS	to	have	
fulfilled	the	functional	promises	that	had	been	
made	–	they	were	still	immensely	expensive.	
Stentor	eliminated	the	cost	of	entry	for	hospitals	
to	have	this	type	of	solution	by	packaging	it	as	
a	service,	rather	than	a	product.	

Stentor	came	up	with	a	per-study	fee	for	storage	
and	distribution	of	the	data	through	iSite.	If	an	
institution	wanted	another	workstation,	there	
was	no	license	fee	–	they	just	purchased	another	
computer	and	loaded	the	software.	Upgrades	
were	included	in	the	per-fee	charge	–	no	hidden	
costs.	The	institution	could	then	pay	for	the	
system	as	they	used	it.	This	model	uniquely	
aligned	the	interests	of	the	customer	and	the	
supplier	–	producing	one	of	the	most	loyal	
customer	bases	in	the	industry	–	and	forcing	
Stentor	to	always	provide	the	highest	quality	
applications.
	
The	previously	existing	PACS	technology	
required	specialized	computer	workstations	
costing	as	much	as	$120,000	each	to	handle	the	
volume	of	data	required	and	manipulate	the	
images	in	real	time	without	the	iSyntax	technology.	
In	addition,	again	without	the	iSyntax	
technology,	high	performace	local	networks	were	
required	to	distribute	this	volume	of	data	–	
causing	limited	distribution	of	the	solutions	and	
expensive	infrastructure	upgrades.	Lossy	
compression	was	used	to	overcome	the	network	
issues	–	but	this	just	provided	corrupted	data	to	
the	workstation	–	which	still	had	to	manipulate	
these	large	images	in	real	time.	All	of	these	issues	
made	the	traditional	PACS	solutions	prohibitively	
expensive	for	all	but	the	nation’s	biggest	medical	
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centers.	And	even	those	institutions	could	not	
afford	to	use	the	expensive	workstations	outside	
their	radiology	departments.

The	iSyntax	technology	makes	it	possible	to	
distribute	and	view	medical	images	over	ordinary	
networks	on	desktop	PCs	(Figure	1).	Dr	Chang	
came	up	with	the	inspiration	for	the	iSyntax	
approach	after	visiting	a	factory	that	had	done	
away	with	its	parts	warehouse	by	adopting	
“just-in-time”	delivery	of	its	supplies.	Because	
doctors	do	not	focus	on	an	entire	radiological	
image	at	one	time,	it	is	only	necessary	for	the	
system	to	deliver	the	data	for	the	region	of	
interest	at	the	moment	that	it	is	being	viewed.

The	iSite	software	incorporating	iSyntax	
technology	was	first	deployed	at	UPMC	
Presbyterian	and	has	subsequently	been	deployed	
at	over	300	medical	institutions	in	the	United	
States	and	Europe.

The	iSite	system	is	designed	to	give	all	physicians	
within	a	healthcare	system	-	not	just	the	
radiologists	-	access	to	full-quality	diagnostic	
images	anywhere	and	at	any	time.	It	ends	the	
practice	of	“patients	as	couriers”	to	take	X-rays	
from	one	doctor	or	institution	to	another.	
Patients	and	doctors	at	a	community	hospital	
in	the	UPMC	system,	for	example,	are	able	to	
get	immediate	consultations	with	subspecialists	
at	another	hospital	viewing	the	same	images	at	
the	same	time.

In	August	2005,	Stentor	merged	into	Philips	
Medical	Systems’	Healthcare	Informatics	business,	
and	is	now	the	Radiology	Informatics	Business	
Group	for	Philips,	headquartered	in	Foster	City,	
California.	The	iSite	platform	is	now	marketed	
worldwide	by	Philips	Medical	Systems.

iSyntax and iSite
iSyntax	is	the	underlying	representation	of	
images	residing	on	a	server,	and	the	
communication	protocol	used	to	transmit	the	
requested	information	to	a	client	in	the	iSite	
system.	The	images	are	represented	by	wavelets	
(see	the	Intermezzo)	allowing	the	maximum	
information	in	the	signal	to	be	represented	by	
the	minimum	number	of	coefficients,	without	
loss	of	information.	

The	typical	way	to	optimize	the	solution	to	any	
complex	problem	is	to	examine	each	component	
of	the	problem	and	optimize	the	steps.	This	is	
what	led	to	the	impractical	early	PACS	solutions.	
When	there	is	a	complex	system,	such	as	
information	workflow	in	a	hospital,	the	solution	
to	the	whole	problem,	i.e.	the	system	optimization	
of	a	solution,	is	rarely	the	same	as	the	individual	
component	optimization.

The	iSite	solution	is	designed	to	optimize	the	
system	(i.e.	workflow)	problem	in	the	
healthcare	environment.	The	design	of	the	iSite	
system	and	the	iSyntax	representation	has	a	
number	of	critical	characteristics:

•		The	representation	is	scalable.	Any	image	or	
sub-image	can	be	retrieved	with	bandwidth	
and	computation	proportional	only	to	the	
number	of	pixels	requested	–	independently	
of	the	size	of	the	original	data	set.

•		The	server	access	from	the	client	is	stateless.	
This	allows	load	balancing	and	optimal	use	of	
available	resources.	Human	interaction	with	
computers	is	at	a	snail’s	pace	relative	to	the	
available	computational	and	bandwidth	
resources.	Keeping	a	direct	connection	to	a	
resource	with	long	idle	periods	is	inefficient.

•		The	server	access	to	data	is	computation-free.	

G
Figure	1.	The	iSyntax	technology	

makes	it	possible	to	display	high-

quality	medical	images	on	a	

standard	PC.
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INTERMEzzo

Wavelets
In	the	same	way	that	an	x-	and	y-coordinate	can	
represent	a	point	in	a	plane,	the	branch	of	
mathematics	known	as	“functional	analysis”	
uses	coordinate	systems	called	“basis	elements”	
to	represent	functions.	The	sine	and	cosine	
functions	in	the	Fourier	transform	are	the	best	
recognized	example	of	this	approach.	Any	
unknown	function	can	be	represented	by	these	
basis	elements	multiplied	by	a	series	of	
constants.	The	characterization	of	the	function	
is	then	the	characterization	of	a	known	set	of	
these	basis	functions.
Wavelets	are	the	mathematically	optimal	way	of	
representing	any	signal.	“Optimal”	means	that	
the	maximum	information	in	the	signal	can	be	
represented	by	the	minimum	number	of	
coefficients.	It	should	be	noted	that	there	are	an	

infinite	number	of	wavelet	systems	which	are	
parameterized.	A	particular	system	of	basis	
elements	with	desired	characteristics	can	be	found	
for	a	target	application.	

One	major	advantage	of	the	wavelet	representation	
is	that	geometric	detail	is	preserved	–	that	is,	the	
transform	coefficients	preserve	the	relative	
positions	of	features	(see	Figure	I ).	This	allows	
extraction	of	specific	coefficients	to	reconstitute	
a	specific	feature	in	an	image	(see	Figure	II ).	
Additionally,	this	is	well	matched	to	the	human	
visual	system	and	the	way	in	which	images	are	
perceived.	Frequency-based	methods,	such	as	
the	DCT	in	the	original	JPEG	format,	create	
artifacts	that	are	easily	seen	as	they	corrupt	the	
geometry	of	the	original	image.	E

Figure II.	Scalable	access	to	sub-images.

Figure I.	Wavelet	transformed	image	
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Compression

Image compression essentials
An	image	is	represented	in	a	computer	by	a	
matrix	of	pixel	values,	either	monochrome	or	
multi-spectral,	for	example	in	color.	Since	most	
images	of	interest	are	created	by	reflected	or	
absorbed	light	or	other	spectra	such	as	X-rays,	
sampled	values	in	an	immediate	geometric	
vicinity	tend	to	be	related,	or	correlated.	This	
means	that	pixels	that	are	close	geometrically	
tend	to	be	either	similar	in	value,	or	completely	
different.	This	correlation	implies	redundancy	
in	the	representation	of	the	image.	The	process	
of	image	compression	tries	to	remove	the	
redundancy	in	the	description	of	the	image	
required	to	reconstitute	the	original	sampled	
values,	in	order	to	reduce	the	amount	of	memory	
or	bandwidth	required	for	storage	and	
transmission.

There	are	two	distinct	classes	of	image	
compression	methods	–	lossless,	and	lossy.	

Lossless compression essentials
Lossless	compression	retains	sufficient	
information	to	reconstitute	the	image	exactly.	
Lossless	image	compression	has	absolute	limits	
that	no	method	can	exceed.	The	branch	of	
mathematics	that	defines	this	limit	–	information	
theory	–	is	extremely	mature.	There	is	an	
“information	content”	in	an	image	which	can	be	
measured	in	bits	and	is	the	absolute	upper	limit	
for	how	much	a	signal	can	be	compressed	–	as	
long	as	the	data	is	not	directly	derived	for	some	
easily	predicted	model.	This	“information	
content”	is	defined	as:	

Σ	-p
i
	lg	(	p

i
	)

I.e.,	the	sum	of	the	probabilities	of	the	individual	
value,	times	the	lg	(log	base	2)	of	the	probability.	
For	example,	an	image	of	any	single	value	has	a	
probability	of	1	for	that	value,	and	an	information	
content	of	0	bits	–	there	is	no	information	in	the	
image.	If	an	image	were	comprised	of	50%	zeros,	
and	50%	ones,	then	the	information	content	
would	be:

-0.5	*	lg	(0.5)	+	-0.5	*	lg	(0.5)	=	1	bit	of	information	

This	formula	quantitatively	describes	the	amount	
of	independent	information	in	the	sampled	data	
per	sample.
If	there	is	a	predictive	model	of	the	data,	then	
the	probabilities	used	in	the	equation	are	the	
conditional	probabilities	of	the	independent	
symbols.	I.e.,	if	a	1	always	follows	a	0,	then	the	
probability	of	the	1	after	the	zero	is	1,	and	the	
information	content	is	0.

The	“art”	of	image	compression	is	two-part	–	
either	in	the	definition	of	a	model	that	improves	
the	predictive	probability	of	the	“next”	pixel,	or	
in	the	method	used	to	reorganize	the	data	into	
a	representation	more	amenable	to	compression.	
In	either	approach,	the	information	content	of	
the	image	as	a	fundamental	limit	of	
compressibility	cannot	be	exceeded.	

As	it	turns	out,	a	wavelet	representation	of	the	
image	is	close	to	the	optimal	“re-organization”	
of	the	image	information	for	input	to	a	lossless	
(or	lossy)	compression	system.	The	wavelet	
representation	optimally	decorrelates	the	data	
so	that	the	input	values	are	independent	–	there	
is	no	redundant	encoding	of	data.	In	effect,	the	
wavelet	transform	is	acting	as	a	high-efficiency	
predictor	–	but	retains	all	of	the	geometric	
information	of	the	image.	Consequently,	this	
representation	provides	an	optimal	
representation	for	both	image	compression,	and	
human	visual	perception.

Lossy compression methods
Lossy	image	compression	uses	various	methods	
to	approximate	the	original	image	in	such	a	way	
as	to	improve	compressibility.	By	lossy,	it	is	meant	
that	the	input	pixel	values	are	changed	upon	
inversion.	As	the	vast	majority	of	interesting	
images	are	not	easily	predictable,	this	
approximation	step	usually	comprises	
quantization	of	the	images	into	a	reduced	
dynamic	range.	For	example,	if	an	image	were	
comprised	of	pixel	values	from	0	to	255	such	as	
an	8-bit	grayscale	image,	to	improve	
compressibility,	the	data	could	be	quantized	by	
dividing	each	value	by	2,	yielding	a	new	
dynamic	range	of	0	to	127.	These	quantized	
values	can	then	be	inverted	by	multiplying	by	
the	quantization	factor	and	the	degradation	in	
the	image	relative	to	the	original	is	caused	by	
the	deviation	of	the	approximated	values	from	
the	original	values.	
In	this	case,	all	odd	values	would	be	
approximated	by	the	next	lower	even	value	–	
but	the	image	has	half	the	“information	content”.	

After	this	quantization,	or	approximation	step,	
similar	lossless	coding	methods	are	used	as	in	
the	lossless	case	above.	These	methods	are	
generally	called	“entropy	coding”	methods	as	
“information	content”	is	a	measure	of	the	
entropy	of	a	system.	The	more	ordered	a	system,	
the	less	information	is	present.	If	every	value	
were	predictable	–	there	would	be	no	
information.	If	every	value	is	random,	then	
entropy	is	maximized	and	the	information	
content	is	maximized.22 MEDICAMUNDI	51/1	2007/06
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This	allows	optimal,	scalable	use	of	the	server	
resources.	If	any	interaction	has	a	computational	
load	on	the	server,	the	server	scalability	is	
compromised.	Many	competitors	have	copied	
the	iSyntax	behavior	at	a	single	workstation	–	
but	fail	when	multiple	users	are	querying	the	
same	server.	The	iSite	system	scales	to	over	a	
thousand	users	on	a	single	server.
•		The	server-client	communication	is	in	discrete	

requests.	Streaming	overloads	resources.	The	
context	of	a	doctor’s	accesses	can	allow	a	
predictable	way	to	pre-fetch	data	–	for	example,	
the	next	image	in	a	stack	in	the	direction	of	
query.	With	the	use	of	localizers	and	scouts,	
the	doctor	can	go	directly	to	an	important	
image	or	feature	without	incurring	the	overhead	
of	waiting	for	the	streaming	load	of	the	entire	
dataset.	Workflow	is	optimized1.	

These	capabilities	combine	to	provide	the	
technology	to	enable	the	incorporation	of	images	
into	the	ubiquitous	information	systems	as	just	
another	piece	of	information.

Compression
Additional	benefits,	and	the	relationship	of	
iSyntax	to	lossless	and	lossy	compression	
methods	are	described	in	detail	in	the	
Intermezzo.	In	brief,	there	are	two	distinct	
classes	of	image	compression	methods:	lossless	
and	lossy.	As	the	names	imply,	lossless	
compression	methods	retain	all	of	the	original	
information,	while	in	lossy	methods	some	of	
the	information	is	lost.

 Why lossy methods are sub-optimal for 
medical images
Lossy	image	compression	approximates	the	
original	image	by	an	image	more	amenable	to	
prediction	or	entropy	coding.	Every	lossy	image	
compression	method	uses	a	target	error	metric	
such	as	mean-squared	error	or	absolute	
maximum	error	as	a	measurement	of	how	good	
a	compression	is.	This	is	often	indicated	by	the	
signal-to-noise	ratio.

Quantization	methods	approximate	similar	
values	by	a	constant	value	–	for	example,	in	an	
area	of	an	image	with	texture,	the	detail	in	the	
texture	can	be	sacrificed	without	incurring	a	
large	“error”.	In	an	ordinary	photograph,	
background	objects	such	as	trees	or	the	sky	can	
be	heavily	degraded	without	perceived	loss	of	
detail	in	the	image.	These	are	the	methods	used	
by	every	commercial	image	compression	system,	
along	with	JPEG.
The	difficulty	here	is	in	the	application	of	these	
methods	to	medical	images.	In	virtually	all	cases,	

the	diagnostic	information	in	a	medical	image	
is	a	subtle	variation	in	low-contrast,	high-
frequency	detail	–	i.e.	local	texture.	A	hard	edge	
such	as	a	fracture	is	easily	detected	in	even	highly	
compressed	images.	A	subtle	malignancy	does	
not	have	a	hard	edge	–	but	is	rather	identified	
by	a	variation	in	localized	texture.	The	human	
eye	is	very	good	at	detecting	this	type	of	local	
variation.	However,	all	commercial	compression	
systems	preferentially	discard	this	information	
first.	These	subtle	details	–	such	as	a	
pneumothorax	–	are	routinely	missed	in	
uncompressed	images.	The	idea	that	compression	
can	be	“as	good	as”	the	original	image	neglects	
these	considerations.	

The	common	argument	that	diagnostically	
important	areas	are	not	compressed	highly	but	
“there	is	a	lot	of	black	space	in	medical	images	
that	can	be	compressed”	is	answered	more	
effectively	with	the	iSyntax	approach:	“just	don’t	
send	it”.

iSyntax image representation
The	wavelet	representation	used	in	iSyntax	is	
not	compression	–	it	is	just	a	representation.	In	
other	words,	what	goes	in	is	what	comes	out.	
What	the	wavelet	representation	brings	to	the	
table	is	an	optimal	way	to	represent	the	
information	needed	to	reconstruct	any	part	of	
an	image,	at	any	resolution,	with	the	minimum	
amount	of	data,	while	maximizing	the	data	
integrity	relative	to	the	original	image.	This	is,	
in	fact,	a	complicated	way	of	saying	that	it	is	the	
best	way	to	represent	the	data.

The	lossless	compression	step	is	performed	on	
the	wavelet-transformed	data.	Both	the	iSyntax	
system	and	JPEG	use	the	identical	underlying	
representation.

Given	that	there	is	a	theoretical	limit	to	the	
maximum	compression	available	for	any	given	
signal,	how	is	it	attained	and	what	are	the	
trade-offs?

There	are	several	“degrees	of	freedom”	in	how	
compression	can	be	applied	to	a	signal:
1.	maximum	compression
2.	rapid	encoding
3.	rapid	decoding
4.	scalable	access	of	encoded	data

All	of	these	“degrees	of	freedom”	have	an	
associated	“cost”.	For	example,	if	one	chooses	to	
attain	the	highest	degree	of	compression	possible,	
then	there	is	no	flexibility	in	encoding	or	
decoding	times,	nor	scalable	access.

1Clearly,	when	video	formats	are	used,	streaming	is	the	preferred	delivery	mechanism
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An	example	of	rapid	encoding	is	a	delta	coder,	
where	a	signal	is	encoded	by	the	differences	in	
adjacent	signals.	This	is	very	low	computation,	
but	has	a	low	expected	compression	rate.

An	intermediate	compression	method	is	a	
Huffman	coder	(variable	length	prefix	coder).	
This	requires	pre-computing	a	set	of	code	tables	
but	achieves	fairly	high	compression	–	at	the	cost	
of	latency	(computation)	in	encode	and	decode	
and	the	overhead	of	storing	and	communicating	
the	tables	to	the	decoder.

JPEG	and	iSyntax	have	the	same	image	
representation	–	a	wavelet	transform.	In	fact,	for	
the	lossless	case,	the	wavelet	system	chosen	is	
the	same.	The	methods	differ	in	the	choice	of	
lossless	compression	used.	JPEG	uses	a	method	
that	achieves	close	to	the	theoretical	maximum	
compression	–	at	the	cost	of	extremely	high	
computation	and	no	scalable	access	to	the	data.	
What	that	means	is	that	the	entire	image	can	
be	retrieved	with	the	least	amount	of	data	–	but	
no	sub-part	or	sub-resolution	of	the	image	can	
be	retrieved	independently2.	That	is,	the	entire	
compressed	image	partition	must	be	accessed	
to	retrieve	any	part	of	the	image.

The	iSyntax	method	uses	a	lossless	compression	
method	that	optimizes	scalable	access,	at	the	
expense	of	10-15%	coding	efficiency.	This	
translates	into	the	ability	to	extract	any	region	
at	full	resolution	or	any	sub-resolution	of	the	
image	with	no	computational	overhead.	This	
allows	for	the	remote	access	capabilities	of	the	
iSyntax	system,	and	the	maximum	scalability	
of	server	and	client	computing	resources.	

This	choice	was	made	to	optimize	the	
characteristics	of	the	image	storage	with	medical	
workflow.	Data	storage	is	becoming	progressively	
more	inexpensive,	while	clinical	and	diagnostic	
interpretation	of	images	is	becoming	more	
expensive	and	more	complex.	The	flexible	access	
to	data	by	doctors	at	any	location	is	far	more	
critical	than	maximum	compression.	The	true	
cost	component	of	the	overall	system	is	doctor	
bandwidth.	By	choosing	a	flexible	representation,	
iSyntax	allows	the	integration	of	images	into	
the	information	systems	of	an	enterprise	as	just	
another	component	of	data.	This	has	allowed	
an	entire	re-design	of	the	user	interfaces	to	
incorporate	visual	cues	for	doctors,	rather	than	

textual	descriptions	to	identify	pertinent	medical	
information.	This	is	an	enormous	gain	in	
efficiency	and	system	utilization,	as	several	major	
medical	sites	using	iSite	have	found3.	

optimization
There	is	no	magic	to	iSyntax.	There	are	extremely	
solid	limits	to	how	much	a	signal	can	be	
compressed	and	iSyntax	gets	close	to	these	limits.	
It	is	unlikely	that	any	future	method	will	ever	
beat	iSyntax	in	compression	rate	by	any	
significant	amount.

Following	the	theme	of	workflow	or	system-
wide	optimization,	the	use	of	iSyntax	also	enables	
other	optimizations.

It	is	not	data	bandwidth	but	latency	that	is	
important.	With	the	iSyntax	technology	enabling	
the	integration	of	images	into	the	information	
system,	the	user	interface	for	dealing	with	clinical	
data	was	redesigned	for	use	in	the	iSite	system.	
The	doctor	no	longer	needs	to	read	a	description	
of	the	contents	of	a	study,	but	is	rather	visually	
cued	by	the	actual	contents	of	the	study.	This	is	
far	more	efficient.

With	an	intelligent	design	of	the	interface,	the	
problem	becomes	one	of	how	to	“hide”	latency?	
This	is	a	complicated	topic	with	many	nuances,	
but	a	simple	example	will	show	why	iSyntax	with	
no	lossy	compression	is	more	effective	and	faster	
than	a	system	using	lossy	JPEG	compressed	
images.	

Assume	a	user	would	like	to	display	an	X-ray	
image	that	is	approximately	2048	x	2536	
(2	K	x	2.5	K)	on	their	computer	screen	in	a	
small	window	approximately	500	x	300	pixels.	
Although,	the	original	image	size	is	
approximately	10	MB,	the	data	required	for	the	
“first”	image	to	be	displayed	using	iSyntax	is	
around	40	KB,	whereas	the	lossy	compressed	
image	(assuming	20	:	1	lossy	compression)	
requires	500	KB	for	any	display.	The	user	then	
examines	the	available	images	and	makes	
decisions	as	to	what	to	do	next.	During	this	
phase,	the	iSyntax	system	is	downloading	
increasing	resolution	–	“hiding”	load	time.	By	
the	time	the	user	decides	to	increase	the	size	of	
the	window	or	zoom	into	the	image	in	order	to	
investigate	some	structures	more	closely	or	
perform	quantitative	measurements,	all	data	

2JPEG	does	provide	the	ability	to	encode	a	pre-computed	region	of	interest	for	preferential	extraction.	However,	this	

is	a	meaningless	case	in	medical	imaging	where	the	pertinent	area	of	an	image	cannot	be	known	beforehand.

3MD	Anderson	in	Houston,	TX	found	that	the	utilization	of	their	physician	portal	went	from	5-6%	to	over	90%	after	

the	inclusion	of	the	iSyntax	imaging	capabilities.

Images are integrated into 
the enterprise information 
system like any other data.

E

Visual cues achieve an 
enormous gain in efficiency 
and system utilization.

E



will	have	been	downloaded	in	the	background.	
iSyntax	gives	the	appearance	of	immediate	and	
instantaneous	image	load	time	with	little	
sensitivity	to	data	size	or	network	limitation.	In	
contrast,	the	lossy	system	is	less	responsive,	has	
higher	user	latencies	and	introduces	image	
degradation.

Conclusion
By	concentrating	on	optimizing	the	workflow	
solution	of	a	combined	image	and	information	
system,	using	iSyntax	as	a	enabling	technology,	
Stentor	completely	re-solved	the	PACS	problem.	
Combined	with	a	redesign	of	the	data	interaction	

iSite is a ubiquitous 
system optimizing the 
workflow of images and 
information.
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model	of	the	user	interface	to	better	support	
rapid	interpretation,	Stentor	was	able	to	integrate	
images	into	iSite:	a	ubiquitous	information	
system	which	enabled	the	first	practical	unified	
electronic	patient	records	to	be	developed.

It	must	be	stressed	that	this	is	only	one	
component	of	the	iSite	success.	In	combination,	
a	unique	service	delivery	and	business	model	
was	developed	which	removed	the	financial	
barrier	of	entry	to	hospitals	and	clinics	to	have	
this	kind	of	enterprise	support.	This	aspect	of	
the	iSite	strategy	will	be	dealt	with	in	another	
article	K
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