

Healthcare informatics

Actionable intelligence to help you orchestrate care at multiple levels.

Philips Patient Flow Capacity Suite

Combining clinical and operational data to drive actionable intelligence

When patient transition decisions are made at both the enterprise and the unit level, priorities and bottlenecks may be difficult to identify—potentially leading to inconsistent care delivery. A holistic approach to care orchestration is needed, one that combines clinical and operational data and transforms it into actionable intelligence.

Philips Patient Flow Capacity Suite is a patient logistics application that can help care teams realize an integrated delivery of care. Our approach to care orchestration connects the front lines with hospital enterprise operations, so you can systematically predict demand, make informed decisions, and visualize patient flow bottlenecks.

Predict capacity surges

Enterprise Demand Capacity (Predicted Census)

The built-in "digital twin" adaptive model supports an enterprise-wide view of capacity with predictive analytics, to support forecasting at enterprise, hospital and unit levels. Powered by machine learning, the algorithm uses retrospective hospital data, along with hourly patient data and weekly trends, to continuously adapt and help staff proactively prevent bottlenecks.

Help identify unnecessary admissions

Readmission Prediction Score (RPS)

Supports clinical decision-making at admission and discharge by identifying early indications of patient readmission risk and highlighting patients who may be more likely to be readmitted within 30 days. The machine learning-based algorithm is trained on multi-year data from various US-based hospitals.

PFCS te	epte forest								(1) (1)	w • 0 •	
					35		2				
					92					*	
	0145				90			Orland			
					72		3				
					79		1				
					47		5	Delayed			
					92		4				
					42		5				
					75		3	Delayed			
	1				27		2				
					29		4				
					24		4				
	2				ъ		5				
					70			Orland			
					м		3	Delayed			
					9		1	Orland			
										-	

Recurring Patient Flag (RPF)

Helps identify recurring patients so they are triaged appropriately to optimally manage post-acute care and prevent bouncebacks. The algorithm uses multiple years of data from various US-based hospitals to define thresholds for number of emergency department visits, number of non-elective admissions, and days between current and previous admissions.

Support patient flow decisions

PFCS trapp									Contract	
(Name) > [Management										
					- 15	1-549-2020				L
					22	16 Sep 2020				L
	63165				22	16 Sep 2020		Delayed and		L
Automatica					72	16 Sep 200	3			L
					79.	10 Sep 2020	3			L
					47	16.549-2020	5	Delayed 2/1		L
					9	16.5xp.2029	4			L
					42	16.5ap.200	5			L
					×	16 Sep 2020		Delayed 2.5		L
	1				27	10 Sep 200	-			
					29	16 Sep 2020	4			
					24	16 Sep 2109	4			
	2				6	1 5 yr 300	5	Gerfaid an		
					20	16 Sep 2020	2	Delayed		
Aurage imposed in a					14	10 Sep 2020		Delayed 2.9		
And out a solution					9	1-5ep-202		Onland 11		
- Annaly and										

Transition Review Score (TRS)

Supports early identification of patient needs in emergency department and general care. The machine learning-based algorithm is trained on multi-year data from various US-based hospitals to provide high performance for predicting care escalation needs, six hours in advance.

Promote focused use of critical resources

ST/AR algorithm

Provides visualization of alarms and alarm trends to help prioritize telemetry patient reviews. Compared to the reference data base, the algorithm provides effective monitoring of arrhythmia events. Alarms are collected by PIC iX and sent to Patient Flow Capacity Suite, which displays yellow/red alarms and trends.

Support proactive identification of in/out-patient flow

PFCS (m										Canada		2
COMPANY > MARKING												
								Oracle				
							2	01168 55	24			
								On Tack 6,7	18.8			
	0155							Origent 25	- 60			
Addation					72		3	0x10x8 4,9	-			
					79		1	Ox 1948 23	b 14m			
					47		5	Delayed 2/9	Um.		r	
					9		4	On Task 14	20			
					42		5	On Task 6,0	9-10-n		*	
					75		3	Delayed 2.9	b Kn			
	1				27			On Task 5/6	Sin.			
					29		4	0x1ux 27	-			
					24		4	On Task 21	5.54			
	2				8		5	OrTack 6/9	2.40			
					n		2	Ordered by	2.0			
Autografierentent					м			Delayed 2.9	Bille			
Autoge See to see g					9			Ordered 14	2.64			
Antigettet												

Actionable checklist and care status

Care status provides an in-depth view at the patient level, with color-coded thresholds. The actionable checklist identifies items for completion at admission and discharge, with highlighting for delayed actions.

Predict remaining length of stay

Med Surg Cer	Med Surg Census (226)											
								RE	248 hrs	43		
								Fall	<48 hrs	65		
								DNI	x24 hrs	27	Delayed	
								ONR	<48 hrs	60		
								FME .	<48 hrs	55		
								Other	<24 hrs	34	Delayed	

Med-Surg Remaining Length of Stay (RLOS)

Supports the care team in discharge evaluation of patients. The machine learning-based algorithm is trained on multi-year data from US-based hospitals. It takes labs, vitals, trending, medications and reason for visit into account to provide an initial prediction four hours into the med-surg admission. Predictions are updated at 24, 48, and 72 hours.

E PFCS	•								
Information Care Unit									
								~	ACCRETE UNITED
	-								
									1.000
									1.000
									-
									1.000
							Internet 114		1989
							Internet and		1.0484
									1000
							Integer UT	~	1400A
							Second 10		1.000
									11010
									1.2484
	-							*	1.000

ICU Remaining Length of Stay (RLOS)

Specifically designed for the ICU to support the care team in discharge evaluation of patients. The machine learning-based algorithm models surviving and perishing patients as competing events and is trained on a rich ICU dataset that include 495,000 patients admitted during 2017 and 2018 from 366 ICUs within 228 different hospitals in the USA. It takes labs, vitals, patient characteristics, evaluations, and reason for admission into account to predict if patient will be discharged in under 24 hours, 24-48 hours, or >48 hours.

With Patient Flow Capacity Suite, you have access to tools and support that can help you realize your goals related to supporting the Quadruple Aim.

0

Improved patient experience: By right-sizing length-of-stays and minimizing service lengths, Philips believes Patient Flow Capacity Suite can make an impact toward more positive experience for patients.

Y

Improved staff satisfaction: Patient Flow Capacity Suite can help you improve patient handoffs and staff collaboration—which in turn can support enhanced staff satisfaction.

Better health outcomes: Patient Flow Capacity Suite is intended to help you expand access to care for patients within

your service area by supporting your efforts to eliminate wasted inpatient capacity and helping providers to focus their care on patients who require their expertise.

	s
e	Ň

Lower cost of care: Patient Flow Capacity Suite is designed to help you spread the fixed and semi-fixed costs of the system over

a greater volume of care experiences, which may help you lower the cost of each episode and support improvements in hospital operating margins.

Learn how Patient Flow Capacity Suite provides actionable intelligence to help you orchestrate care at multiple levels. Visit philips.com/patient-flow-capacity-suite.

Solutions may not be available in all markets. Please check with your Philips representative for complete portfolio availability.

© 2021 Koninklijke Philips N.V. All rights are reserved.

www.philips.com

